Generating more code with Harpy
After a slight detour into expression representation I'm back to generating code again.
To recap, here's how I'm going to do my embedded expressions in Haskell.  For now I'll stick to ugly looking boolean operators.  Fixing that is a whole other story.
    
module Exp(Exp(..), Lit(..), Fun(..), PrimOp(..)) where
data Exp
    = Con Lit
    | Arg Int
    | App Fun [Exp]
    deriving (Eq, Ord, Show)
data Lit
    = LInt  Int
    deriving (Eq, Ord, Show)
data Fun
    = FPrimOp PrimOp
    deriving (Eq, Ord, Show)
data PrimOp
    = I_Add | I_Sub | I_Mul | I_Quot | I_Rem | I_Neg
    | I_EQ | I_NE | I_LT | I_LE | I_GT | I_GE
    | I_Cond
    deriving (Eq, Ord, Show)
-----------------------------------------------------
module MExp(M(..)) where
import Exp
newtype M a = M { unM :: Exp }
    deriving (Show)
-----------------------------------------------------
module M(M, cond,
         (.==), (./=), (.<), (.<=), (.>), (.>=),
         false, true, (.&&), (.||)
        ) where
import Exp
import MExp
instance Eq (M a)
instance Ord (M a)
instance Num (M Int) where
    x + y  =  binOp I_Add x y
    x - y  =  binOp I_Sub x y
    x * y  =  binOp I_Mul x y
    negate x =  unOp I_Neg x
    fromInteger i = M $ Con $ LInt $ fromInteger i
instance Enum (M Int)
instance Real (M Int) where
instance Integral (M Int) where
    quot x y = binOp I_Quot x y
    rem x y = binOp I_Rem x y
binOp op (M x) (M y) = M $ App (FPrimOp op) [x, y]
unOp op (M x) = M $ App (FPrimOp op) [x]
--------
infix 4 ./=, .==, .<, .<=, .>, .>=
(.==), (./=), (.<), (.<=), (.>), (.>=) :: M Int -> M Int -> M Bool
(.==) = binOp I_EQ
(./=) = binOp I_NE
(.<)  = binOp I_LT
(.<=) = binOp I_LE
(.>)  = binOp I_GT
(.>=) = binOp I_GE
cond :: M Bool -> M Int -> M Int -> M Int
cond (M c) (M t) (M e) = M $ App (FPrimOp I_Cond) [c, t, e]
condB :: M Bool -> M Bool -> M Bool -> M Bool
condB (M c) (M t) (M e) = M $ App (FPrimOp I_Cond) [c, t, e]
false, true :: M Bool
false = M $ Con $ LInt 0
true  = M $ Con $ LInt 1
infixr 3 .&&
infixr 2 .||
(.&&), (.||) :: M Bool -> M Bool -> M Bool
x .&& y = condB x y false
x .|| y = condB x true y
So the Exp type is the internal representation of expressions.  It's just constants, variables, and some primitive operations.
The M (for machine) type is the phantom type that the DSL user will see.  The module M contains all the user visible functions.  Note that it handles booleans by represented the C way, by an int that is 0 or 1.  There's a conditional function, cond, and a corresponding primitive that will serve as our if.
So now we need to generate code for these.  This is all very similar to what I did in a previous posting, I have just refactored some of the code generation.  The invariant (that I arbitrarily decided on) is that each block of code that implements a primitive operation will may clobber EAX but must leave all other registers intact.
This is mostly just a chunk of rather boring code.  Division is causing problems as usual, since the IA32 instructions don't allow you to specify a destination register.  One point worth a look is the code generation for cond.  It has to test a boolean and then select one of two code blocks, but that is just what you'd expect.
module CodeGen(cgExp, CGen, cgPrologue, cgEpilogue, compileFun) where
import Prelude hiding(and, or)
import Control.Monad.Trans
import Data.Maybe(fromJust)
import Foreign
import Harpy.CodeGenMonad
import Harpy.X86Assembler
import Exp
import MExp
type StackDepth = Int
type Env = ()
type CGen a = CodeGen Env StackDepth a
addDepth :: StackDepth -> CGen ()
addDepth i = do
    d <- getState
    setState (d+i)
cgExp :: Exp -> CGen ()
cgExp (Con l) = cgLit l
cgExp (Arg a) = cgArg a
cgExp (App (FPrimOp I_Cond) [c, t, e]) = cgCond c t e
cgExp (App f es) = do mapM_ cgExp es; cgFun f (length es)
cgFun (FPrimOp p) _ = cgPrimOp p
cgPrimOp I_Add = twoOp add
cgPrimOp I_Sub = twoOp sub
cgPrimOp I_Mul = twoOp (imul InPlace)
cgPrimOp I_Quot = twoOp (cgQuotRem eax)
cgPrimOp I_Rem = twoOp (cgQuotRem edx)
cgPrimOp I_Neg = oneOp neg
cgPrimOp I_EQ = cmpOp sete
cgPrimOp I_NE = cmpOp setnz
cgPrimOp I_LT = cmpOp setl
cgPrimOp I_LE = cmpOp setle
cgPrimOp I_GT = cmpOp setg
cgPrimOp I_GE = cmpOp setge
cgCond c t e = do
    cgExp c
    popReg eax
    test eax eax
    l1 <- newLabel
    l2 <- newLabel
    jz l1
    cgExp t
    addDepth (-1)               -- pretend last cgExp didn't push anything
    jmp l2
    l1 @@ cgExp e
    l2 @@ return ()
cmpOp op = twoOp $ \ r1 r2 -> do
    cmp r1 r2
    op (reg32ToReg8 r1)
    and r1 (1 :: Word32)
cgLit (LInt i) = do
    mov eax (fromIntegral i :: Word32)
    pushReg eax
cgArg :: Int -> CGen ()
cgArg n = do
    d <- getState
    let o = 4 * (d + n)
    mov eax (Disp (fromIntegral o), esp)
    pushReg eax
cgQuotRem res r1 r2 = do
    push edx                    -- save temp reg
    push r2                     -- push second operand (in case it's edx)
    xmov  eax r1                -- first operand must be in eax
    mov  edx eax
    sar  edx (31 :: Word8)      -- sign extend
    idiv (Disp 0, esp)          -- divide by second operand (now on stack)
    add  esp (4 :: Word32)      -- remove second operand
    xmov  r1 res                -- put result in r1
    pop  edx                    -- restore edx
-- Do a register to register move, but do generate no-ops
xmov r1 r2 = if r1 == r2 then return () else mov r1 r2
reg32ToReg8 (Reg32 r) = Reg8 r
--------
twoOp op = do
    pop ebx
    pop ecx
    op ecx ebx
    push ecx
    addDepth (-1)
oneOp op = do
    pop ebx
    op ebx
    push ebx
pushReg r = do
    push r
    addDepth 1
popReg r = do
    pop r
    addDepth (-1)
--------
compileFun :: (M Int -> M Int) -> CGen ()
compileFun f = do
    ensureBufferSize 1000
    setState startDepth
    cgPrologue
    cgExp $ unM $ f $ M $ Arg 0
    cgEpilogue
----
savedRegs = [ebx, ecx]
startDepth = length savedRegs + 1
-- Push all register we'll be using, except eax.
cgPrologue :: CGen ()
cgPrologue = do
    mapM_ push savedRegs
-- Pop return value to eax, restore regs, and return
cgEpilogue :: CGen ()
cgEpilogue = do
    popReg  eax
    mapM_ pop (reverse savedRegs)
    ret
Given all this, we can generate code for a function and call it from Haskell code.
But that's rather boring since we have only primitive functions and no way to call DSL functions from within the DSL.  So we have no recursion.  And as we all know, recursion is where the fun starts.
So we need to add expressions and code generation for calling functions.  First we extend the Exp module.
data Fun
    = FPrimOp PrimOp
    | Func FuncNo
newtype FuncNo = FuncNo Int
The idea being that our DSL functions will be represented by a FuncNo which is an Int.
Next, we will extend the code generation.  While generating code we will keep an environment that maps function numbers to the corresponding labels to call.
type Env = [(FuncNo, Label)]
...
cgFun (Func f) n = do
    e <- getEnv
    call $ fromJust $ lookup f e
    add esp (fromIntegral (4 * n) :: Word32)
    addDepth (-n)
    pushReg eax
To call a function we look up its label and generate a call instruction to that label.  Then we pop off the arguments that we pushed before the call, and finally we push EAX (where the return value is).  Simple, huh?
But where did the environment come from?  Well, it's time to be a little inventive and introduce a monad.  Functions are represented by unique integers in the expression type, so we'll need a state monad to generate them.
module Gen where
import Control.Monad.State
import Harpy.CodeGenMonad
import Exp
import MExp
import CodeGen
data GenState = GenState { funcs :: [(FuncNo, CGen ())], nextFunc :: Int }
startGenState :: GenState
startGenState = GenState { funcs = [], nextFunc = 0 }
type G a = State GenState a
fun :: MInt2MInt -> G MInt2MInt
fun f = do
    s <- get
    let n = nextFunc s
        fno = FuncNo n
    put GenState{ funcs = (fno, compileFun f) : funcs s,
                  nextFunc = n + 1 }
    return $ \ x -> M $ App (Func fno) [unM x]
runG :: G MInt2MInt -> CGen ()
runG g = do
    let (ret, s) = runState g startGenState
        funs = reverse $ funcs s
    funMap <- mapM (\ (fno, _) -> do l <- newLabel; return (fno, l)) funs
    withEnv funMap $ do
        compileFun ret
        zipWithM_ (\ (f, l) (_, g) -> l @@ g) funMap funs
This code actually has some interesting points.
First, the monad, G, keeps a list of defined functions.  The list has the function number and the CodeGen block that will generate code for it.
Second, the fun function is the one that creates a new function number.  It also calls compileFun to get a CodeGen block that will generate code for the function.  Note that no code is generated at this point.  The G monad is just a simple state monad, not the IO based codeGen monad.  Also note how fun returns an expression that is of the same type as the argument, but it now uses an App to call the function.
Finally, the runG function generates all the code.  It uses runState to obtain the list of defined function and the result to return.  Now code generation starts.  For each function we generate a new label.  Pairing up the function number and the label forms our environment, funMap.  With this environment installed we start code generation for the functions, first the return value, then all the defined function; each with its label attached.
Well, that's it.  Let's wrap it all up.
module Compile(compileIO, disasmIO, module M, module Gen) where import Convert import Gen import M type MInt = M Int compileIO :: G (MInt -> MInt) -> IO (Int -> Int) compileIO f = fmap flex $ compileIOW32 f where flex g = fromIntegral . g . fromIntegral compileIOW32 :: G (MInt -> MInt) -> IO (Word32 -> Word32) compileIOW32 = conv_Word32ToWord32 [] undefined . runG disasmIO :: G (MInt -> MInt) -> IO String disasmIO = disasm [] undefined . runGAnd, of course, a test. Here we hit a snag. We want recursion, but monadic bindings (do) are not recursive. Luckily, ghc does implement recursive do called mdo (why that name, I have no idea) for any monad that is in the class MonadFix. And the state monad is, so we are in luck.
{-# OPTIONS_GHC -fglasgow-exts #-}
module Main where
import Compile
main = do
    let g = mdo
                fib <- fun $ \ n -> cond (n .< 2) 1 (fib(n-1) + fib(n-2))
                return $ fib
    test <- compileIO g
    print (test 40)
It even runs and produces the right answer, 165580141.  Running time for this example is about 4.0s on my machine.  Running fib compiled with 'ghc -O' takes about 3.4s, so we're in the same ballpark.
Oh, and if anyone wonders what the code looks like for this example, here it is.  This is really, really bad code.
003d6cd0 53 push ebx 003d6cd1 51 push ecx 003d6cd2 8b 44 24 0c mov eax,dword ptr [esp+12] 003d6cd6 50 push eax 003d6cd7 e8 08 00 00 00 call [3d6ce4H] 003d6cdc 83 c4 04 add esp,4H 003d6cdf 50 push eax 003d6ce0 58 pop eax 003d6ce1 59 pop ecx 003d6ce2 5b pop ebx 003d6ce3 c3 ret 003d6ce4 53 push ebx 003d6ce5 51 push ecx 003d6ce6 8b 44 24 0c mov eax,dword ptr [esp+12] 003d6cea 50 push eax 003d6ceb b8 02 00 00 00 mov eax,2H 003d6cf0 50 push eax 003d6cf1 5b pop ebx 003d6cf2 59 pop ecx 003d6cf3 3b cb cmp ecx,ebx 003d6cf5 0f 9c c1 setl cl 003d6cf8 83 e1 01 and ecx,1H 003d6cfb 51 push ecx 003d6cfc 58 pop eax 003d6cfd 85 c0 test eax,eax 003d6cff 0f 84 0b 00 00 00 je [3d6d10H] 003d6d05 b8 01 00 00 00 mov eax,1H 003d6d0a 50 push eax 003d6d0b e9 37 00 00 00 jmp [3d6d47H] 003d6d10 8b 44 24 0c mov eax,dword ptr [esp+12] 003d6d14 50 push eax 003d6d15 b8 01 00 00 00 mov eax,1H 003d6d1a 50 push eax 003d6d1b 5b pop ebx 003d6d1c 59 pop ecx 003d6d1d 2b cb sub ecx,ebx 003d6d1f 51 push ecx 003d6d20 e8 bf ff ff ff call [3d6ce4H] 003d6d25 83 c4 04 add esp,4H 003d6d28 50 push eax 003d6d29 8b 44 24 10 mov eax,dword ptr [esp+16] 003d6d2d 50 push eax 003d6d2e b8 02 00 00 00 mov eax,2H 003d6d33 50 push eax 003d6d34 5b pop ebx 003d6d35 59 pop ecx 003d6d36 2b cb sub ecx,ebx 003d6d38 51 push ecx 003d6d39 e8 a6 ff ff ff call [3d6ce4H] 003d6d3e 83 c4 04 add esp,4H 003d6d41 50 push eax 003d6d42 5b pop ebx 003d6d43 59 pop ecx 003d6d44 03 cb add ecx,ebx 003d6d46 51 push ecx 003d6d47 58 pop eax 003d6d48 59 pop ecx 003d6d49 5b pop ebx 003d6d4a c3 ret
Labels: Code generation, Haskell

